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A novel and efficient synthesis of chiral C2-symmetric 1,4-diamines
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A novel and efficient method for synthesis of (R,R)- and (S,S)-C2-symmetric 1,4-diamines was established.
The key steps are a combination of Pinacol Coupling and Corey–Winter olefination.
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Scheme 1. Reagents: (a) TCDI; (b) AIBN/Bu3SnH.
Diastereo- and enantiomerically pure 1,n-diamines (n = 2–5)
are recognized as important structural elements of many biologi-
cally active compounds. In addition, 1,2-diamines are widely used
as chiral auxiliaries and ligands in asymmetric synthesis. There-
fore, it is not surprising that a number of synthetic methods exist
for the diastereo- and enantioselective synthesis of vicinal dia-
mines.1 However, there are limited methods available for synthesis
of other diamines. In one of our medicinal chemistry programs, we
needed to synthesize chiral C2-symmetrical 1,4-diamine 1 (Figure
1). Herein, we report our investigations that led to the sequential
use of Pinacol Coupling and Corey–Winter olefination as methods
of choice for the synthesis of 1,4-diamines.

One direct approach to 1,4-diamine 1 was to utilize the key
intermediate 3 from the published synthesis of lopinavir (2).2 As
shown in Scheme 1, the removal of the hydroxyl group was
achieved through free radical-mediated deoxygenation to provide
diamine 4.3 However, the deoxygenation step required high dilu-
tion and use of tin-containing reagents, and therefore was judged
unsuitable for synthesis on gram-scale which was needed for pre-
paring analogs to establish SARs.

After we carefully analysed the few methods available for the
diastereoisomeric synthesis of 1,4-diamines in the literature,4 we
decided to use the procedures optimized by Gurjar to generate
the diamine 1 (Scheme 2). Both aldehyde 6b and sulfone 7 were
prepared from L-phenylalaninol 5. Under Julia olefination condi-
tions, the coupling reaction between aldehyde 6b and sulfone 7
afforded alkene 9. Debenzylation of 9, followed by hydrogenation
and deprotection of the Boc-group, gave diamine 1 from 6b in
33% overall yield. Diamine 1 prepared through this method served
our initial purpose of establishing limited SAR. However, the fact
ll rights reserved.
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that the Julia olefination required the use of n-butyllithium at low
temperature (�78 �C), and a large amount of mercury (for Na/Hg
amalgam) limited its application to large-scale production. In addi-
tion, the necessity of benzyl protection of the amino function of the
aldehyde 6b to facilitate smooth Julia olefination resulted in the use
of sodium/ammonia in the debenzylation step, which presented
further challenges in a multi-gram synthesis for preclinical evalua-
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Scheme 2. Reagents and conditions: (a) n-BuLi, THF, �78 �C; (b) (i) Ac2O, Py, CH2Cl2, rt; (ii) 6%Na–Hg, Na2HPO4, MeOH, rt; (c) (i) Na/liq NH3, THF, �33 �C; (ii) H2, 10% Pd/C, rt;
(iii) HCl/dioxane.
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tion. The efforts to use aldehyde 6a, where benzyl protection was
absent, for Julia olefination met with failure. Furthermore, prepara-
tion of both aldehyde 6b and sulfone 7 involved many steps. The
synthesis of diamine 1 from commercial phenylalaninol took 12 to-
tal steps, or 9 steps in the longest linear sequence. Modified Julia
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Scheme 5. Reagents and conditions: (a) SO3-pyridine/Et3N/DMSO; (b) VCl3–(THF)3/Zn/TH
80% from 13.
olefination, such as Julia–Kocienski olefination, was considered
but it only partially removed those limitations discussed above.
We felt that, in order to provide a large quantity of 1,4-diamine 1,
it was necessary to develop a new and efficient synthesis.

A potential route to prepare compound 11, which could be con-
verted to diamine 1 using a similar procedure as in the transforma-
tion of compound 9 to 1, is through metathesis of olefin 10. Olefin
10 was synthesized according to the literature procedure from 6b.5

Unfortunately, no desired olefin 11 was observed after treating ole-
fin 10 with different metathesis conditions6 (Scheme 3).

A second method we envisioned, as outlined in Scheme 4, was
one in which diol 13 could be converted into alkene 12 through
Corey–Winter olefination,7 which after hydrogenation should af-
ford desired 1,4-diamine 1. Diol 13 could be easily accessed from
aldehyde 14 through a Pinacol Coupling reaction. Aldehyde 14
would be obtained from commercially available amino alcohol or
amino acid. The combination of Pinacol Coupling and Corey–Win-
ter olefination could provide a new procedure for the synthesis of
chiral C2-symmetrical 1,4-diamines.

The method is summarized in Scheme 5. Cbz-L-phenylalaninol
15, prepared easily from L-phenylalaninol 58 or obtained from com-
mercial sources directly, was oxidized with SO3-pyridine in DMSO
to afford the aldehyde 14. Aldehyde 14 can also be prepared from
either the free acid of or an ester of Cbz-L-phenylalanine.9 The alde-
hyde 14 was transformed into the diol 13 through an intermolecu-
lar vanadium-assisted Pinacol Coupling reaction according to the
literature procedure.10 As reported in the literature, high diastereo-
meric purity of diol 13 was achieved after recrystallization in tetra-
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hydrofuran (THF)/hexanes. Reaction of diol 13 with 1,10-thi-
ocarbonyldiimidazole in refluxed THF yielded cyclic thiocarbonate
16. Treatment of thiocarbonate 16 with triethylphosphite at
160 �C generated alkene 12. We found that the purity of the thiocar-
bonate 16 was very important for a successful elimination. The de-
sired purity of thiocarbonate 16 could be achieved by a quick flash
chromatography or by washing the reaction mixture with dilute
hydrochloric acid. The symmetric alkene 12 was a highly crystalline
compound, and it could be recrystallized easily in ethyl acetate/
hexanes. Finally, hydrogenation of alkene 12 under one atmosphere
of hydrogen catalyzed by 10%Pd/C afforded diamine 1. In this se-
quence, diamine 1 was prepared from diol 13 in excellent yields
(70–80%).11 Using this method, the diamine 1 can be prepared in to-
tal five steps from Cbz-protected phenylalaninol. The reactions
were carried out on hundred-gram scales, and purifications for
the whole sequence were achieved through recrystallizations.

Similarly, the (S,S)-enantiomer 17 (Fig. 2) was synthesized on a
hundred-gram scale following the same sequence starting from
Cbz-D-phenylalaninol. Other alkyl-substituted C2-symmetric 1,4-
diamines, such as diamine 18, were also prepared in a similar man-
ner and in comparable yields when starting from the correspond-
ing amino alcohols or amino acids (Fig. 2).

In conclusion, we have developed a novel and practical method
for diastereoselective synthesis of chiral C2-symmetric 1,4-dia-
mines from easily accessible amino alcohols or amino acids.
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